Aubry-Mather type at the Double Resonance
Aubry-Mather type at the Double Resonance
This chapter proves Aubry-Mather type for the double resonance regime. It begins by considering the “non-critical energy case” and showing that the cohomologies as chosen are of Aubry-Mather type. The proof consists of two cases. In the first case, the chapter uses the almost verticality of the cylinder, and the idea is similar to the proof of Theorem 9.3. It applies the a priori Lipschitz estimates for the Aubry sets. In the second case, the chapter uses the strong Lipschitz estimate for the energy, and the idea is similar to the proof of Theorem 11.1. It then looks at the construction of the local coordinates. This is done separately near the hyperbolic fixed point (local) and away from it (global).
Keywords: Aubry-Mather type, double resonance regime, non-critical energy case, cohomologies, Lipschitz estimates, Aubry sets, local coordinates
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.