Forcing equivalence between kissing cylinders
Forcing equivalence between kissing cylinders
This chapter formulates and proves the jump mechanism. It constructs a variational problem which proves forcing equivalence for the original Hamiltonian using Definition 6.18. It first constructs a special variational problem for the slow mechanical system. A solution of this variational problem is an orbit “jumping” from one homology class to the other. The chapter then modifies this variational problem for the fast time-periodic perturbation of the slow mechanical system. This is achieved by applying the perturbative results established in Chapter 7. Recall the original Hamiltonian system near a double resonance can be brought to a normal form and this normal form, in turn, is related to the perturbed slow system through coordinate change and energy reduction. The variational problem for the perturbed slow system can then be converted to a variational problem for the original.
Keywords: jump mechanism, variational problem, forcing equivalence, Hamiltonian system, slow mechanical system, homology class, perturbed slow system
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.