Measurement Theory
Measurement Theory
This chapter reviews measurement theory in quantum mechanics. The measurement prescription in quantum mechanics can be stated in a few lines and has found an enormous range of applications, in all of which it has proved to be consistent with logic and experimental tests. However, the implications seem so bizarre that people such as Albert Einstein and Eugene Wigner have argued that the theory cannot be physically complete as its stands. The chapter then extends the prescription to the case where the state vector is not known. It also discusses some of the “paradoxes” of quantum mechanics. Finally, the chapter presents Bell's theorem, which shows that there cannot be a local underlying deterministic theory for which quantum mechanics plays the role of a statistical approximation.
Keywords: measurement theory, quantum mechanics, state vector, Bell's theorem, statistical approximation
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.