GCM Procedure
GCM Procedure
This chapter describes the general covariant modulation (GCM) procedure in detail. It considers an axially symmetric polarized spacetime region R foliated by two functions (u, s) such that: on R, (u, s) defines an outgoing geodesic foliation as in section 2.2.4. The chapter then outlines the elliptic Hodge lemma. It also looks at the deformations of S surfaces, frame transformations, and the existence of GCM spheres. It recalls the transformation formulas recorded in Proposition 2.90, before rewriting a subset of these transformations in a more useful form. In the proof of existence and uniqueness of GCMS, one needs, in addition to the equations derived so far, an equation for the average of α. Finally, the chapter discusses the construction of GCM hypersurfaces.
Keywords: general covariant modulation procedure, spacetime, geodesic foliation, elliptic Hodge lemma, S surfaces, frame transformations, general covariant modulation spheres, general covariant modulation hypersurfaces
Princeton Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us.